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Developing a Common Metric in Item Response Theory

Abstract

A common problem arises when independent estimates of item param-

utcrs from two separate data sets must be expressed in the same metric.

Nhi problem is frequently confronted in studies of horizontal and

vertical equating and in studies of item bias. This paper discusses

a number of methods for transforming one metric to another metric

and presents a new method. Data are given comparing this -ew method

L'iLh Z. current method and recommendations are made.

SOL.
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Developing a Common Metric in Item Response Theory*

Introduction

Suppose that item parameters for a given set of items have been

independently estimated using data obtained from two different groups

of examinees. These item parameter estimates will be different because

the metric or scale defined by each independent calibration of the items

is different. Many applications of item response theory (IRT) require

that these item parameter estimates be expressed in the same metric.

SuchI applications include vertical score-scale equating, horizontal

score-scale equating, and item bias studies.

It is possible to transform item parameter estimates in one metric

to another metric by a number of different methods. This paper will

discuss the nature of these scale transformations, survey a number of

current transformation methods, and present a new method and some

results of its application.

The Nature of Scale Transformations

Item response theory models P.(e a ;ai, i'y1 ) , the probability

of a correct response to item i by a person with ability level ea

In t,\pical models, P.(0a ;c i,,y) is a function of ai( a  ,
1 at Yea a 'Y

where is the item discrimination, is the item difficulty,

*This work was supported in part by contract N00014-80-C-0402,
project designation NRI50-453 between the Office of Naval Research and
Educational Testing Service. Reproduction in whole or in part is
permitted for any purpose of the United States Government.
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and Yi is the probability that an individual of very low ability

answers the item correctly. When Pi(e a ;a i, yi ) is a function

of ai (a - i ) , the origin and unit of measurement of the ability

(and difficulty) metric are undetermined. That is to say, suppose

a is transformed by a linear transformation, nroducing 0* . Suppose
a a

the same linear transformation is applied to 3. to produce i3t
£ 1

Finally, ai is divided by the multiplicative constant of the linear

transformation to produce At . These transformations will not change
1

the probability of a correct response: Pi(;*i*,yi) = P( 0 ;Ui.,Sii')

Notice that no transformation is necessary for the Y because Y is

on the probability metric.

If an item is calibrated, i.e., its parameters a-e estimated, as

part of one test, and then calibrated as part of a second test given to

a different group, the actual values of the estimates of the parameters

will differ because the scales established by the two calibrations dif-

fer. However, the relationship between these two scales will be linear

since they differ only in origin and unit of measurement.

If b is the estimate of item difficulty from the calibration

of item i in test 1, and b12 is the estimate of the same item dif-

ficulty from the calibration of test 2, b* the value of b
i2 'i2

transformed to the scale of test 1, is

b*2 Abi2 + B , (i)
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where A and B are constants of the linear transformation of scale.

If estimated item difficulties are transformed by a linear transformation,

estimated abilities must be transformed by the same transformation, thus

0* = AO + B (2)
a2 a2

If estimated item difficulty and ability are transformed by these linear

expressions, then estimated item discrimination is transformed by

a2 = ai 2 /A (3)

These transformations do not change ai2 (ea2 - bi2) ,consequently

* a b c )P (6* a* b ,c )
i (a2; i2' i2' i2 i a2' i2' 12 c i2 )

The problem of transforming the scales reduces to the problem of

finding the appropriate A and B of the linear transformation. If we

were dealing with true values of the parameters on their respective scales,

it would be simple to find the correct values of A and B ; we could plot

the values of two or more item difficulties and determine the line passing

through them. But, we do not have true values; we have only estimates of

them, and these estimates contain error. The estimated item difficulties will

not fall into a straight line, but be scattered around some straight line.

All methods of transforming scales attempt to estimate the parameters of

this line by various techniques, and are applicable to any IRT rmodel where

P i (0a .) is a function of , - .



Current Methods

Superficially, the problem of finding the linear relationship

between two sets of numbers might seem to call for simplc regression

techniques. The estimated item difficulties (or abilities) from one

calibration might be used is the independent variable, and those obtained

from the second calibration as the dependent variable. This approach

would be incorrect. A regression approach assumes the independent vari-

able is measured without error; we know this is not the case. But nore

important, a regression procedure is not symmetric with respect to its

treatment of the two estimatEs of item difficulties. Since we have no

reason for emphasizing or favoring one estimate of item difficulty over

another estimate of the same item difficulty, we require a symmetric

procedure.

A class of symmetric methods uses the first two moments of the dis-

tributions of estimated item difficulties. 'ihese methods find the param-

eters of the linear transformation, A and 13 , such that the mean and

standard deviation of the transformed distribution of estimated item dif-

ficulties from the second calibration are equal to the mean and standard

deviation of the estimated item difficulties from the first calibration.

A simple application of this method is found in Marco (1977) and in

Cook, Eignor, and Hutten (1979). Poorly estimated item difficulties may

have a serious impact of the computation of sample moments, however, pro-

ducing a linear transformation that cannot be useful. Cook ot al. (1979)
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attempt to solve this by restricting the range of the difficultes used

in computing moments.

Bejar and Wingerskv (1981) use a more elaborate approaci. Robust

methods that give smaller weights to outlying points are used to esti-

mate the moments. Linn, Levine, Hastings, & Wardrop (1980) attempt to

reduce the influence of outliers by using weighted moments where the

weights are inversely proportional to the estimated standard error of

the estimates of the item difficulties.

The Be jar and Wingerskv procedure treats all outliers in tihe same

fashion, regardless of their standard error. The Linn et al . procvdurc

I-edts all points with the same standard error in the same fashion,

regardless of their outlier status. A procedure was developed by Lord

and Stocking which attempts to overcome these potential problems. This

procedure begins with a weighted estimate of the transformation exactly

as in Linn et al. A robust procedure is then used to give small weights to

those values whose perpendicular distance from this initial line is large,

and a new line is estimated. The robust weighting is repeated until changes

in the perpendicular distances become small. Details of this method are

presented in the Appendix. Some results of this method will be described

in subsequent sections of this paper.

A drawback of all of those '"mean and sigma" transformation procedu r es

is that they are typically applied only to the estimated item difficulties.

That is, the A and B of the linear transformation of scale are

estimated using only the b , and then applied to transform the

and the a. . While this is theoretically correct, better methods may
1

exist which use more of the information available from the calibratio~ns.
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A class of methods, called "characteristic curve methods" in this

paper, uses more information from calibrations. Each calibration of an

item yields an estimated item response function or item characteristic curve

Pi( C ) a-- Pi(.a ;ai,bi,ci) If estimates were error free, the proper choice

of A and B for the linear transformation would cause these two curves to

coincide. Haebara (1980) averages the squared difference between the indi-

vidual item response functions over a suitable distribution of , sums

over the items common to the two calibrations, and chooses A and B to

minimize this sum. Divgi (1980) chooses the A and B of the linear trnns-

formation to minimize the maximum difference between the sum of item

response functions for the first calibration and the sum of the item

response functions for the second calibration.

The New Method

This method falls into the class of characteristic curve methods.

An examince, a , with ability e has a true score de fined
a a

n
-7 ) = X P (e;a.,:.,.) 

,i

)a a - a
i=l

where n is the number of items in the test. The correct linear trans-

formation of scales from two different calibrations of the same test would
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produce the same true scores for examinee a if the ai $i, . 'i were

known. If is the estimated true score obtained from the second calibra-a

tion of the test after it has been transformed to the scale of the first, then

n
P'* -*(a - p(a;a0,b* c) (5)

a ai=l a 1

For an examinee, the difference (- - *) should be small. In
a a

practice, we want to choose A and B such that for a suitable

group of examinees, the average squared difference between true score

estimates is as small as possible. The function to be minimized

is

N2= ( _ , 2 , ( )

N =N a aa=1

where N is the number of examinees in the arbitrary group.

This function F considered as a function of A and B will be

minimized when

N
SF =-2 Na

and2

N
3F -2 0 (8)
B N a= a a (8)a= 1
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Now, using the chain rule of differentiation,

.:* ; at b*2ci) b*
___ = i a i2i2 i2 i2

*A .thJ,A i=l ib2 3

-Pi( aa; 2 , b* 2 , c i2 )  a
+ 1) 2 2P 2 1 (9)

12

A*a -a1b2 1a2 1a2

Differentiating equations (1) and (3) gives 2= A and -A i2

Substituting these derivatives into (9) gives the partial derivative

,* n "PA.(" -a* b* ,P("a at2,b2,ci2a _ i a i2' ai2  a' 2 2' i2
A -  (b (10

3A 12b't 2 ',at 0
i=l -2 A 12

Also,

a1,an P a * , b
a .i( a i2i2 i2 i2 (11)
iB )M )~ b B

12

From equation (), B= I , and substitution into (11) gives

.* n P ( . ; a 2, b * , c i )
a i a 12$ 12 12

(12)1ii2

The functional form of the partial derivatives of the item response

function depends on the mathematical model chosen. Formulas

for the partial derivatives for the three-parameter logistic item

response function are given in Lord (1980, Chapter 4).
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Once the functional form for the item response function is chosen,

its derivatives are substituted into equations (10) and (12). These

new expressions are then substituted into equations (7) and (8) to

find the location of the minimum of F in equation (6).

In the applications described in the following section, the

arbitrary group of examinees over which the function was minimized

was chosen to be a spaced sample of about 200 oxaminees from the first

calibration of a test. The parameters A and B of the linear trans-

formation were found by minimizing F using the multivariate search

technique by Davidon (1959) and Fletcher and Powell (1963).

Results

The Data and Analyses

Data from about 2000 examinees from each of 12 separate administra-

tions of the Scholastic Aptitude Test (SAT) were selected for this study.

The SAT consists of six, 30-minute sections: two operational verbal

sections, two operational mathematical sections, one Test of Standard

Written English (TSWE) and one variable section containing equating or

pretest items. The two verbal sections contain 40 and 45 items

respectively; mathematical sections are 25 and 35 items respectively.

Verbal equating or pretest sections are 40 items long; corresponding

mathematical sections are 25 items long. TSWE data were not used in

this study.

Each box in Exhibit I represents the operational sections, either

verbal or mathematical, of a particular form of the SAT (upper case letters

and numbers) and the equating section administered with that test form
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(lower case letters). Each box contains items that are the same as items

shown in boxes above and below it. For example, the second box in the

verbal series contains items designated "X2fe." The "fe" items overlap

with those contained in the box labeled "V4fe"; the "X2" items overlap

with those contained in the box labeled "Xfm. The last box in each

of the verbal and mathematical series contains items that overlap with

the items in the first box, thus forming a closed chain.

Each box represents a separate calibration run using the computer

program LOGIST (Wingersky, in press; Wingersky, Barton, Lord, 1982). For

both the verbal chain and the mathematicail chain, the scale established by

the calibration of the items in the first box in the chain was arbitrarily

chosen as the "base scale" for that chain. The estimates of item param-

eters for the overlapping items were then used to transform the scales

established by the separate calibrations onto the appropriate base

scale. For the verbal chain, for example, X2fe was transformed to the

scale of V4fe using the item parameter estimates for the fe items that

appear in both calibrations. Then X2fm was transformed to the scale of

the transformed X2fe items, using the item parameter estimates for the

X2 common items. This, of course, places the X2fm items on the V4fe scale.

The next set of items, Y3fm, was transformed to the scale of the trans-

formed X2fm items and so forth, until all items were placed on the scale

of V4fe.

This sequential transformation process was performed in two ways:

(1) the robust mean and sigma Lord and Stocking method described in
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Verbal Chain Mathematical Chain

Fe X2 iff X2i

LII

Y3 Ywj

LfxB3~

fk Y2; 4 Y2

IY2 fu 2 f

fu Z5 fv z25

e[ ,t I.5 t

Exhibit 1: Verbal and Mathematical Chains. Each box contains verbal or
mathematical sections (capital letters and numbers) and an equating

section (small letters).
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the Appendix and (2) the new characteristic curve method described

previously. This allows the comparison of the end results of the

chaining process between the two transformation methods, but does not

allow the comparison of the results of individual "links" in the chain.

To compare individual links in the chain, each link in the chain

from the robust mean and sigma method was repeated exactly with the

characteristic curve method. For example, in the verbal chain, X2fm

was transformed to the scale of the (mean and sigma) transformed X2fe

by the mean and sigma method as part of the sequential chaining using

this method. This link was repeated exactly by using the characteristic

curve method to transform X2fm to the scale of the (mean and sigma)

transformed X2fe. In contrast to the chain of characteristic curve

transformations, this series of characteristic curve transformations

does not form a chain.

Results of Transformations for Verbal Items--Individual Links

A typical comparison of individual links is shown in Figures 1

and 2. In Figure 1, the horizontal axis is the (robust mean and sigma)

transformed item difficulties for operational section X2 from the X2fe

calibration. The vertical axis is the scale of th2 item difficulties

for operational section X2 from the X2fm calibration. In Figure 2, the

horizontal axis is the scale of the (robust mean and sigma) transformed

item discriminations from X2 of X2fe. The vertical axis is the scale

of the item discriminations of X2 from X2fm. The solid line through the
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the points in each figure is the linear transformation estimated by

the robust mean and sigma method. The dashed line is the linear

transformation estimated by the new characteristic curve method. The

linear transformations do not differ much.

The largest difference found between the two methods for the verbal

chain is shown in Figures 3 and 4. Figure 3 shows the presence of six

points which could be considered outliers. The robust mean and sigma

method explicitly tries to deal with these points, first by giving them

low weights if the estimated standard errors are large, and then by

giving them low weights if the perpendicular distance to the initial line

is large. These points all ended up with weights which were very small

or zero, thus some available information may have been discarded. The

characteristic curve method does not discard any information. No other

verbal link contained as many outliers as this one. It is possible that

the difference between the two methods is due to their differential

discarding of information.

on the whole, the direct comparison of individual links shows little

difference between the two transformation methods for verbal data.

Results of Transformations for Mathematical Items-Individual Links

Most of the comparisons of the two transformation methods using

mathematical data show little difference between the two methods.

There are exceptions, one of which is shown in Figures 5 and 6.

Inspection of Figure 5 shows the characteristic curve transformation

is clearly a better fit to the data than the robust mean and sigma
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transformation. This difference is more visible in Figure 6 where

the robust mean and sigma transformation of the item discriminations

produces unsatisfactory results. The line does not bisect the point

cloud; there are only 18 out of 60 points below the line. The

characteristic curve transformation was better; 31 out of 60 points

axe below the line.

There were two links which produced comparisons of this kind. That

is, the characteristic curve transformation worked better than the mean

and sigma transformation in both the fit to the item difficulties and

the fit to the item discriminations. There were no links in which the

mean and sigma transformation fit both the item difficulties and item

discriminations better.

Chain Results

The cumulative results of chains of transformations may be evaluated

by transforming the last (transformed) set of items in the chain

directly to the base scale defined by the first set of items. Since

the first and last sets of items are identical, this transformation

should be an identity transformation. Figure 7 shows this comparison

of each transformation method for the SAT verbal chain, and the identity

transformation. The difficulties for items common to the first and

last set of items are plotted on the horizontal axis. Figure 8 displays

the same information for the SAT mathematical chain.
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The robust mean and sigma method gives slightly better results

than the characteristic curve method for verbal data. For mathematical

data, the characteristic curve method worked better than the robust

mean and sigma method.

Conclusions

In situations where the robust mean and sigma transformation

method worked well, as in the verbal data and most of the mathemnatical

data, the characteristic curve method also worked well. However, the

robust mean and sigma method sometimes produced unsatisfactory results.

In these instances, the characteristic curve method worked much better.

In particular, the characteristic curve method produced a much better

transformation for the item discriminations (see Figure 6). If one is

choosing a transformation method, the characteristic curve method,

which uses more of the information available from each of the calibrations,

would be recommended by the authors.



Appendix

Transforming logistic Scales Using a Robust Iterative Weighted

Mean and Sigma Method

This transformation method uses a function of the estimated standard

errors of the estimated item difficulties for conmon items as weights to

determine an initial transformation line based on mean and sigma equating

of weighted estimates of item difficulties for the common items. A new set

of weights is computed using a combination of the estimated standard error

weights and robust (Tukey) weights based on perpendicular distances to the

line. A new transformation line is computed and the procedure iterates until

the maximum change in the perpendicular distances is less than some criterion.

Method

Cmpu ti nthe Standard Errors

The inverse of the information matrix I (p. 191 of Lord (1980)) is

an approximation to the variance/covariance matrix for the item parameter

estimates. The diagonal element of the inverse corresponding to the

item difficulty is the estimated variance of the estimate of item difficulty.

The sequare root of this quantity is the estimated standard error of the

estimate of item difficulty.

Each item has two estimated item difficulties, one from each calibration.

Therefore, each item has two estimated standard errors. The initial weight

for an item to be used in the iterative procedure is the reciprocal of the

larger estimated squared standard error of the estimated item difficulty.
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The accuracy with which an estimated standard error of b is computed

is the ratio of the determinant to the product of the diagonals of the

information matrix. If this ratio is less than 0.0001, the estimated

standard error is not accurate. The item is given a standard error weight

of zero.

All people are included in the computation; except those who did not

reach the item.

Computing the Mean and Sigma Transformation

We have two distributions of weighted estimated item difficulties,

one from each calibration. We let b be the distribution from the first
-A

calibration, and b be the distribution from the second calibration and

compute

b the mean of bl

a b the standard deviation of bi

Xb2 the mean of b

a ,the standard deviation of b
b 1-2

The mean and sigma transformation (line) to put the second calibration

estimated item difficulties onto the scale of the first is

-2 -b2+B

where b' is the transformed distribution from the second calibration.

For this transformation,

A b I ab2

B l -A * b2
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Computing the Tukey Weights

Page 20 of Mosteller and Tukey (1977) gives a method of computing

a robust estimate of location by weighting data with differential weights.

We use only one piece of this process, namely the formula for the weights.

For our purposes, Y* is the transformation line we have tentativelv

found. We replace Tukev's (Y(i) - Y*) with the perpendicular distance

of a point to the line.

Let D(i) equal the absolute value of the perpendicular distance.

Then our weights, T(i) , are

2, 9

{I- (D(i)/CS)'Y when (D(i)/CS)" < 1
T(i) =

otherwise

where S is the median of the D(i) and C is a constant equal to 6.

The Iterative Procedure

The iterative procedure is as follows:

Step 1: For each item difficulty, for each common item, compute

W(i) = SE(B(i))
- 2

where SE(B) is the larger of the two estimated standard errors.

Step 2: Compute a vector of scaled weights

W(i'= W(i)/(sum of W(i))
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Step 3: Compute the mean and sigma transformation line between the two

sets of estimated item difficulties weighted by W' , and get

the slope, A , and the intercept, B

Step 4: Compute the perpendicular distances of each point to the line.

Step 5: Compute the Tukey weights, T(i) for each item, using these

perpendicular distances.

Step 6: Reweight each point by a combined weight U(i) , where

U(i) = (W(i) * T(i))/(sum of W(i) * T(i))

Step 7: Compute the weighted mean and sigma transformation line using

these new weights.

Step 8: Repeat Steps 4, 5, and 6 until the maximum change in the

perpendicular distances is less than 0.01.

Result

This procedure gives low weights to poorly determined item dif-

ficulties or to item difficulties which are outliers. Once the final

transformation is found for the estimated item difficulties, the

estimated item discriminations are transformed, as well as the ability

estimates.
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